

The POWER-POLE ${ }^{\circledR}$ Series of tunable filters provides improved RF performance with increased power handling capability and the lowest insertion loss for a given bandwidth. The product line includes several standard designs in various frequencies to support almost any application.

POWER-POLE ${ }^{\oplus}$ SERIES

Specifications:

Frequency Coverage (Multiple Bands)	ds): $\quad 30$ to 400 MHz
Input/Output Impedance:	50Ω
In-band Input/Output VSWR:	1.5:1 typical
In-band RF Power Handling:	refer to chart below
Outband RF Power Handling:	Up to 20 Watt
In-band Second Order Intercept Point:	t: $\quad+100 \mathrm{dBm}$ (input)
In-band Third Order Intercept Point:	+50 dBm (input)
Center Frequency Drift:	-80 PPM $/{ }^{\circ} \mathrm{C}$
Tuning Control:	8 bit parallel
Tuning Speed:	$15 \mu \mathrm{~S}^{*}$
DC Power Consumption (Static): +5	+5 VDC @ 400 mA to 1.5 A
Shape Factor ($30 \mathrm{~dB} / 3 \mathrm{~dB}$):	6 typical
Operating Temperature Range:	$-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Size: $\quad 2.6 \times 3.0 \times 4.0$ (in.) $/ 66.7 \times 76.2 \times 101.6$ (mm.)	
Weight: 18.7	18.7 oz. / $530.1 \mathrm{~g} . / .5 \mathrm{~kg}$.
RF Connection:	SMA jack

[^0]

Important Application Notes:

- While changing RF center frequencies, RF input power must be reduced to < +20 dBm. These filters will not support "Hot RF Switching Conditions". Please contact the factory in regards to custom features.
- Maximum strobe rate is 2 kHz ; Actual rate is dependent upon frequency band.

Tunable Bendipass fiters

The following plots illustrate approximate insertion loss and bandwidth trends across a given frequency band, and the differences between various bands:

POWER-30-90-3

Performance:
The following plot illustrates approximate performance (not representative of all frequency ranges):

POWER-POLE ${ }^{\circledR}$ SERIES Selection Guide:

	Suffix	\% Bandwidth (3 dB)	$\begin{aligned} & \text { Insertion } \\ & \text { Loss } \end{aligned}$	Strobe Rate (max.)	SHAPE FACTOR (30 dB)		
$\begin{gathered} 30 \text { to } 90 \\ \mathrm{MHz} \end{gathered}$	-1	8.4/9.5	0.8/1.2	900 Hz			
	-2	4.3/4.8	1.6/2.4		6.9/7.6	9.3/10.4	4.5/4.7
	-3	2.8/3.2	2.9/4.3		6.0/6.9	7.0/8.9	5.0/5.8
	-4	2.2/2.5	3.4/4.6				
	-5	1.8/1.9	4.4/5.8				
$\begin{gathered} 90 \text { to } 200 \\ \mathrm{MHz} \end{gathered}$	-1	8.6/9.2	0.8/1.2	2 KHz	6.0/6.5	7.5/8.3	4.6/4.7
	-2	4.2/4.8	1.2/2.3				
	-3	2.7/3.2	2.2/3.5				
	-4	2.2/2.5	3.3/5.0				
	-5	1.8/2.0	4.0/5.5				
$\begin{gathered} 200 \text { to } \\ 400 \\ \mathrm{MHz} \end{gathered}$	-1			2 KHz			
	-2	4.2/4.8	1.3/2.2		5.6/6.1	6.4/7.0	4.8/5.3
	-3	2.7/3.1	1.7/3.5				
	-4	2.2/2.5	2.4/3.8				
	-5						
$\begin{gathered} 225 \text { to } \\ 400 \\ \mathrm{MHz} \end{gathered}$	-1	8.2/9.1	0.6/0.9	2 KHz	5.8/6.0	7.0/7.3	4.6/4.7
	-2	4.2/4.8	1.0/2.2				
	-3	2.7/3.1	1.7/3.2				
	-4	2.1/2.5	2.3/3.8		5.7/6.3	6.1/7.0	5.3/5.7
	-5	1.8/2.0	2.5/4.2		5.9/6.2	6.4/6.2	5.4/5.8

This Selection Guide illustrates approximate performance for the POWER-POLE ${ }^{\oplus}$ Series: Table values are shown as average/maximum.

Pinout \& Ratings:

PARALIEL INERFACE			
PIN \#	Reference Designator	Description	Maximum Ratings
1	A2	Parallel Bit 2	-0.5 to $\left(V_{c c}+0.5\right) \mathrm{V}$
2	A3	Parallel Bit 3	
3	A4	Parallel Bit 4	
4	A5	Parallel Bit 5	
5	A6	Parallel Bit 6	
6	A7	Parallel Bit 7	
7,9,11,12	GND	Digital/RF Ground	-
8	V_{cc}	+5 V Power Supply Input $\pm 10 \%$	-0.5 to +6 V
10	N/C	No Connect (1)	-
13	$\overline{\text { STB }}$	Strobe	-0.5 to $\left(V_{c c}+0.5\right) \mathrm{V}$
14	A0	Parallel Bit 0	
15	A1	Parallel Bit 1	

Note(s): 1 Leave pins disconnected for unit to function properly.

SERIAL INTERFACE			
PIN \#	Reference Designator	Description	Maximum Ratings
1	SDO	Serial Data Out	0 to +6 VDC
2-6, 10	N/C	No Connect (1)	-
7, 9, 11, 12	GND	Digital/RF Ground	-
8	Vcc	+5 V Power Supply Input $\pm 10 \%$	-0.5 to +6 V
13	$\overline{\text { STB }}$	Strobe	
14	SCLK	Serial Clock	-0.5 to $\left(V_{c c}+0.5\right) \mathrm{V}$
15	SDI	Serial Data In	

Note(s): 1 Leave pins disconnected for unit to function properly.

Mechanical Outline:

Tunable Bandpass Filters

POWER-POLE ${ }^{\oplus}$ Filters Product Number Guide:

Series	Frequency (MHz)	\% Bandwidth 3 dBm	Connector Type	Options
POWER	$30-90$	1		
	$90-200$	2		
	$200-400$	3	SMA (Female)	B
	$225-400$	4		
		5		

Available Options: B. Serial Interface
C. Custom Frequency Bands (Specify START and STOP frequencies in MHz.)
Note(s): Options may be limited to particular frequency bands and/or configurations. Consult factory for your application.
Example: \quad Product \# POWER-90-200-3-SMA

Interface \& Control Options:

Frequency Tuning Address

There are 250 equally spaced tuning increments across each standard filter band, resulting in 251 tunewords from 00000000 to 11111010 . The last 5 tunewords are reserved for housekeeping functions:
\(\left.$$
\begin{array}{|c|c|}\hline \text { Tune Code } & \text { Result } \\
\hline \begin{array}{c}00000000 \\
\text { thru } \\
11111010\end{array} & \begin{array}{c}\text { Lowest tuned frequency } \\
(251 \text { total tune codes) } \\
\text { Highest tuned frequency }\end{array} \\
\hline \begin{array}{c}111111011 \\
\text { thru } \\
11111110\end{array}
$$ \& RF In/Out Isolation

Filter Blanked\end{array}\right]\)| Power saver mode; all PIN |
| :---: |
| diodes turned off |

Calculating a Tune Address

The binary tuning word is determined by the following relationship:

$$
\text { tuneword }=\left(\frac{F_{\text {desired }}-F_{\text {low }}}{F_{\text {high }}-F_{\text {low }}}\right) \times 250
$$

Example: If you wish to tune to 322 MHz using a 225 to 400 MHz filter, the tuneword is:

$$
\left(\frac{322-225}{400-225}\right) \times 250=138.57 \text { (10001011 binary) }
$$

Note: Round off to the nearest decimal integer.

Interface Options:

The filter comes standard with an 8 bit parallel interface, although a serial interface can be specified as an option.

DC Control Interface Characteristics:

Symbol	Parameter	Condition	Minimum	Maximum	Units
V_{IL}	Input Low Voltage	Control signals except A0-A7	0.0	0.2 Vcc	V
V_{IH}	Input High Voltage	Control signals except A0-A7	0.7 Vcc	Vcc	V
$\mathrm{V}_{\mathrm{IL} 1}$	Input Low Voltage	$\mathrm{A0}-\mathrm{A} 7$	0.0	0.15 Vcc	V
$\mathrm{V}_{\mathrm{IH} 1}$	Input High Voltage	$\mathrm{A0}-\mathrm{A} 7$	0.7 Vcc	Vcc	V

Switching Characteristics: (Vcc $=+5 \mathrm{VDC}, \pm 10 \% ; \mathrm{T}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	Minimum	Maximum	Units
t_{S}	Setup Time, A0-A7 to $\overline{\text { STB }}$	600		nS
t_{H}	Hold Time, A0-A7 from $\overline{\mathrm{STB}}$	2.5		$\mu \mathrm{~S}$
t_{SH}	$\overline{\text { STB }}$ High Time	25		$\mu \mathrm{~S}$
t_{W}	$\overline{\text { STB Pulse Width }}$	600		nS
t_{DW}	Strobe Dwell Time (from $\overline{\text { STB }}$ to falling edge STB falling edge)	500		$\mu \mathrm{~S}$
$\mathrm{t}_{\mathrm{ACC}}$	Access Time from $\overline{\mathrm{STB}}$ to f_{0}		15^{*}	$\mu \mathrm{~S}$

* $15 \mu \mathrm{~s}$ typical for UHF band filters. Consult factory for details on other bands.

Figure 10

Strobe

The filter is tuned within $15 \mu \mathrm{~S}$ to the frequency designated by the tuneword existing on the eight control bit lines when the STB line is brought low. Once strobed, data existing on the tune control lines is ignored until strobed again. Maximum strobe rate is 2 kHz ; Actual rate is dependent upon frequency band.

Temperature Effects

Over the $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ temperature range, filters will exhibit a negative temperature drift of less than $80 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$, or a total of less than $\pm 0.5 \%$ of the center frequency.

[^0]: * 15μ S typical for UHF band filters. Consult factory for details on other bands.

